
Users Recommended Tag Prediction and
Visualization for Dynamic Delicious Tag Data

Jameson Ganta#1, G. Krishna Kishore*2

#Post graduate student,*Assistant Professor

V.R. Siddhartha engineering college

ABSTRACT- Social bookmarking tools enable users to save
URLs for future reference, to create tags for annotating Web
pages, and to share Web pages they found interesting with
others. This project presents a case study on the application of
link mining to a social bookmarking Web site called del.icio.us.
User feedback is obtained by iteratively presenting a set of
suggested items, and users selecting items based on their own
preferences either from this suggestion set or from the set of all
possible items. This proposed system investigates the user
bookmarking and tagging behaviors by applying robust Naïve
bayes, Association rule mining techniques to find surprising
patterns in the data. This study mainly focuses on predicting
popular rules than others. Finally, we demonstrated the
effectiveness of using data mining algorithms for predicting
effective tags rules behavior for delicious web data.

I. INTRODUCTION

With the staggering rate at which new content is produced on
the Internet, it is becoming increasingly difficult for Web
users to keep up to date with the new information. Social
bookmarking is a tool that enables Web users to share
information they found on the Internet with other users
sharing similar interests. It allows users to save and organize
their bookmarks on a remote Web server. Users may assign
tags to each bookmark to annotate what they perceive to be
the content[1]. Some of the popular social bookmarking
Websites include del.icio.us, www.citeulike.org, and
www.furl.net. Social bookmarking is a rich but largely
unexplored domain in link mining. Many applications such as
Web search and text categorization may benefit from the
analysis of social bookmarking data. For example, the
number of users who bookmarked a Web page can be used as
a metric to measure the authoritativeness of the Web page.
The tags used to annotate the bookmarks is another useful
data source that can be harnessed to improve Web search or
Web page classification . A social bookmarkingWeb site is
also a fertile testbed to investigate many social science
phenomena such as information diffusion and social
selection. One approach involves measuring the deviation of
a pattern from its expected frequency while the other is based
on performing a temporal analysis on the user’s bookmarking
history. We then examined characteristics that influence the
popularity of a user. At del.icio.us, a user becomes a fan of
another user by adding the other user to his/her network.The
number of fans each user has can be used as a measure of
user popularity. Because popular users may influence the
bookmarking activities of other users , it is useful to
understand what makes a user more popular than others.
Finally, we studied the linking behavior of users at the social

bookmarking Web site. Specifically, we consider links in the
form of reciprocal ties, which are pairs of users who are
mutual fans of each other. Our goal is to predict the formation
of such ties based on the user bookmarking and tagging
activities.
We define the popularity of bookmarks, users, and tags in the
following way.
1)Bookmark Popularity: The number of users who saved a

given bookmark.
2)User Popularity: The number of fans associated with a user.
3)Tag Popularity: The number of posts that contain a given

tag[3].
Our tag popularity measure is somewhat different than the
one used by del.icio.us, which is based on the number of
unique bookmarks associated with a given tag. There are two
advantages for using our measure. First, it is more
informative because it takes into account both the number of
bookmarks and number of users who have used the tag.
Second, our measure is more resilient to spam tags, which are
the tags used to mislead users about the content of aWeb page
or to attract users to a spamWeb site. If tag popularity is
measured using the number of bookmarks only (instead of
number of posts), it would be easier to promote a spam tag
into a popular tag..
Motivation:
Most classification algorithms perform batch classification,
that is, they work on the dataset directly in memory. More
complex methods often build large data structures which give
them a larger memory footprint. This larger footprint
prevents them from being applied to many of the larger
datasets. Even when these datasets can be used, the
complexity of the algorithm can make the classification task
take an inordinately long time. There are solutions to these
problems in the form of adding more memory or waiting
longer for experiments to finish. However both have a cost in
money and time and both may not ultimately solve the
problem if the dataset cannot in memory when the
memory is at a maximum. A feature of most large
datasets is the large number of data points that contain similar
information. So one solution is to remove redundant
information from the dataset to allow a classifier to
concentrate on data points that represent a larger group of
points[4]. This allows the construction of a classier that
correctly models the relationship expressed by the data in the
dataset. Random sampling is a simple way to remove
redundancy and can be very effective on uniformly
distributed data.

Jameson Ganta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4976 - 4980

4976

II. RELATED WORK

A typical Flickr provides a variety of information about the
photo: who uploaded it and when, what groups it has been
submitted to, its tags, who commented on the image and
when, how many times the image was viewed or bookmarked
as a “favorite”. Clicking on a user’s name brings one to their
photo stream, which shows the latest photos they have
uploaded, the images they have marked as their “favorite,”
and their profile, which gives information about the user,
which includes a list of their contacts and the groups they
belong to. Clicking on the tag shows user’s images that have
been tagged with this keyword, or all public images that have
been similarly tagged. Finally, the group link brings the user
to the group’s page, which shows the photo pool, group
membership, popular tags, discussions and other information
about the group.
We used the Flickr API to download a variety of data for our
study. For the data not provided through the API (for
example, the number of views), we wrote specialized data
scrapers to extract this information from the Web pages.
Since scraping required a separate HTTP request, this had an
effect on the image statistics (e.g., number of views is
incremented by every HTTP request). We corrected for this
effect in post-processing[2].

Database D of transactions, specific Web site
Output: percentage of usage of particular site
Method
1. Accept specific site
2. count = 0;
3. for (int i= 0; i<= D.size;i++)
4. if(D_site = = accept_site)
5. count ++
6. percentage= (count/D_site)*100
7. return percentage //percentage of user from a particular site
upon total web log record

Find a particular site usage
Input: Database D of transactions, Specific Web Site
Output: Users’ IP, Date and Time list
Method
1. Accept a specific Web Site
2. count = 0;
3. for (int i=0; i<= D.size; i++)
4. while (accept_site = = D_size)
5. extract user_IP from D
6. extract corresponding date and time
7. return list of user_IP, date and time

Hierarchical Agglomerative Clustering The input to the
clustering module is a set of tags, T, the step and division
coefficient. Tags are represented as a vector of weights over
the set of resources, R. In these experiments we used both
term frequency and tfidf (Equation 5). The parameter step
controls the granularity of the derived agglomerative clusters.
The similarity threshold, initially set to one, is reduced by the
value step at each iteration until it reaches zero. Clusters of

tags are aggregated together if their similarity measure meets
the current threshold. The division coefficient also plays a
crucial role in the agglomerative clustering routine. It defines
the level where the hierarchy is dissected into individual
clusters. The output of the system is a set of tag clusters.

Ref [5]

Step 1. Assign every tag to a singleton cluster. To begin
every tag in the system is placed in its own cluster, which
serves as the seeds for the agglomerative clustering.
Step 2. Combine all tags in one hierarchical cluster. In this
stage of the algorithm clusters of tags are aggregated together
based on their similarity. Highly similar tags are aggregated
together first, then less similar ones are combined. The result
is a tree structure containing every tag in a hierarchy.
Step 2.1 Combine clusters. Clusters meeting the current
similarity threshold are joined. There are many ways of
determining the distance between clusters: single link,
maximal link, average link, etc. In this paper, we determined
the distance between clusters by using the centroids of the
clusters.
Step 2.2 Lower similarity. The value for the similarity
threshold is lower by step. The algorithm then repeated
step 2.1 until all clusters have been aggregated.
Tag frequency
Tags are used with varying frequencies in a social
bookmarking system. It can be useful to evaluate the
frequency of tags in order to investigate how particular tags
are being used across time and what is the probability that
they will be used again.
Tags per Post (TPP)
As a Describer would focus on describing her resources in a very
detailed manner, the number of tags used to annotate each
resource can be taken into account as an indicator to identify
the motivation of the analyzed user. The tags per post
measure (short TPP) captures this by dividing the number of
all tag assignments of a user by the number of resources (see
Equation 1). Tur is the number of tags annotated by user u on
resource r, and Ru is the number of resources of a user u. The
more tags a user utilizes to annotate the resources the more
likely she is a Describer and this would reect in a higher TPP
score.

Jameson Ganta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4976 - 4980

4977

This measure relies on the verbosity of users, as it computes
the average number of tags they assigned to bookmarks.

Tag Resource Ratio (TRR)
The tag resource ratio (short TRR) relates the number of tags
of a user (i.e., the size of her vocabulary) to the total number
of annotated resources (see Equation 4). A typical
Categorizer would apply only a small number of tags to her
resources and therefore score a low number on this measure.

III. PROPOSED ARCHITECTURE

Figure1: Proposed Architecture

A. Delicious Data
In this paper two types of file formats are used. They
are
i) CSV
ii) ARFF

i. CSV: It stands for Comma Separated Value. This
format is obtained using MS-Excel. Spam dataset is loaded
into Excel and then it is saved with an extension of csv.

ii. ARFF: It stands for Attribute Relation File
Format. A file is an ASCII text file that describes a list of
instances sharing a set of attributes. ARFF files were
developed by the Machine Learning Project at the
Department of Computer Science of The University of
Waikato for use with the Weka machine learning
softwareARFF files have two distinct sections. The first
section is the Header information, which is followed the Data
in The ARFF Header Section the ARFF Header section of the

file contains the relation declaration and attributes
declarations.
B. The @relation Declaration
 The relation name is defined as the first line in the
ARFF file. The format is:
@relation <relation-name>
where <relation-name> is a string. The string must be quoted
if the name includes spaces.
C. The @attribute Declarations
Attribute declarations take the form of an ordered sequence
of @attribute statements. Each attribute in the data set has its
own @attribute statement which uniquely defines the name
of that attribute and its data type[6].
D. Delicious Tag Data
We consider the situation where users select items from a
given set
 c:={1,2,3…..c} where c > 1.

We let be the users’ true preference
over the set of items C and call r the true popularity rank
scores. For an item i, we interpret ri as the portion of users
that would select item I if suggestions were not made[5]. We
assume that the true popularity rank scores r are such that:
1) ri is strictly positive for each item i,
2) items are enumerated such that r1>=r2>=…>=rc and
3) r is normalized such that it follows probability distribution.
First, we consider the naive algorithm which suggests a fixed
number of the topmost popular items and show that this
algorithm can fail to learn the true popularity ranking of items
if the imitation probability in the user’s choice model is
sufficiently large. In particular, we find that there exists a
threshold on the imitation probability below which the
algorithm guarantees to learn the true popularity ranking of
items, and otherwise, this may not hold. We fully specify this
threshold in terms of the suggestion set size and the true
popularity ranks of items[2]. This result enables us to
estimate the threshold imitation probability for a given true
popularity ranking. In particular, we provide estimates for the
threshold using our data set of tags applied to popular Web
pages in del.icio.us and found threshold to be typically
around 0.1 for the suggestion set sizes ranging from 1 to 10
tags. This suggests that in real-world scenarios, using the
above simple scheme may result in failing to learn the true
popularity of items at small imitation rates.
E. A Naive Algorithm
We first introduce the simple algorithm TOP which consists
of a ranking and a suggestion rule as defined below.
TOP (TOP POPULAR)
Init Vi=0 for each item i
At the t-th item selection:
If item i selected:
Vi Vi+1
S a set of s items with largest V counts
The ranking rule is to set the rank score of an item equal to
the number of selections of this item in the past. For this
algorithm and the algorithms introduced later, we initialize Vi
<0 for each item i.

Jameson Ganta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4976 - 4980

4978

Rank rule 1: A simple ranking rule is the one that we already
encountered in the algorithm TOP, where the rank score for
an item i is incremented by 1 whenever a user selects this
item.

Init: Vi =0 for each item i
At the t-th item selection:
If item I selected:
Vi Vi +1
Pi  Vi/t
We will see that this ranking may fail to discover the ranking
order of the true popularity when combined with a suggestion
rule that reinforces items that were selected early on, as it is
the case under TOP.

Rank rule 2:
We noted that rank rule 1 may fail to discover the ranking
order of the true popularity if used with suggestion rules such
as TOP[7]. To overcome this problem, we may redefine the
rank scores in the following way.

Init: Ti =0,Vi=0, for each item i
At the t-th item selection:
For each item i:
If item i not suggested:
Ti Ti +1
If item i selected:
Vi Vi +1
Pi  Vi/ti

F. Bayesian Classification
Bayesian classifiers are statistical classifiers. They can
predict class membership probabilities, such as the
probability that a given tuple belongs to a particular class.
Bayesian classification is based on Bayes theorem. Naïve
Bayesian classifiers assume that the effect of an attribute
value on a given class is independent of the values of the
other attributes. This assumption is called class conditional
independence. It is made to simplify the computations
involved and, in this sense, is considered “naïve.” Bayesian
belief networks are graphical models, which unlike naïve
Bayesian classifiers, allow the representation of dependencies
among subsets of attributes. Bayesian belief networks can
also be used for classification.

G. Bayes’ Theorem
Bayes’ theorem is named after Thomas Bayes, a
nonconformist English clergyman who did early work in
probability and decision theory during the 18th century. Let
X be a data tuple. In Bayesian terms, X is considered
“evidence.” As usual, it is described by measurements made

on a set of n attributes. Let H be some hypothesis, such as
that the data tuple X belongs to a specified class C. For
classification problems, we want to determine P(H/X), the
probability that the hypothesis H holds given the “evidence”
or observed data tuple X. In other words, we are looking for
the probability that tuple X belongs to class C, given that we
know the attribute description of X. P(H/X) is the posterior
probability, or a posteriori probability, of H conditioned on
X. For example, suppose our world of data tuples is confined
to customers described by the attributes age and income,
respectively, and that X is a 35-year-old customer with an
income of $40,000. Suppose that H is the hypothesis that our
customer will buy a computer. Then P(H/X) reflects the
probability that customer X will buy a computer given that
we know the customer’s age and income. In contrast, P(H) is
the prior probability, or a priori probability, of H. For our
example, this is the probability that any given customer will
buy a computer, regardless of age, income, or any other
information, for that matter. The posterior probability,
P(H/X), is based on more information (e.g., customer
information) than the prior probability, P(H), which is
independent of X. Similarly, P(X/H) is the posterior
probability of X conditioned on H. That is, it is the
probability that a customer, X, is 35 years old and earns
$40,000, given that we know the customer will buy a
computer[8][9]. P(X) is the prior probability ofX.Using our
example, it is the probability that a person from our set of
customers is 35 years old and earns $40,000. P(X/H), and
P(X) may be estimated from the given data, as we shall see
below. Bayes’ theorem is useful in that it provides a way of
calculating the posterior probability, P(H/X), from P(H),
P(X/H), and P(X). Bayes’ theorem is

H. Naïve Bayesian Classification
The naïve Bayesian classifier, or simple Bayesian classifier,
works as follows:
1. Let D be a training set of tuples and their associated class
labels. As usual, each tuple is represented by an n-
dimensional attribute vector, X = (x1, x2, : : : , xn), depicting
n measurements made on the tuple from n attributes,
respectively, A1, A2, : : : , An.
2. Suppose that there are m classes, C1, C2, : : : , Cm. Given
a tuple, X, the classifier will predict that X belongs to the
class having the highest posterior probability, conditioned on
X. That is, the naïve Bayesian classifier predicts that tuple X
belongs to the class Ci if and only if P(Ci/X) > P(Cj/X). Thus
we maximize P(Ci/X). The classCi for which P(Ci/X) is
maximized is called the maximum posteriori hypothesis. By
Bayes’ theorem

Tagid Linkid Date Tagname TagClass
1 16693 19:26.5 Portland yes
2 16693 19:26.6 Maine no
3 16693 19:26.6 meetup yes
4 16167 02:17.1 mefi yes
5 16167 02:17.1 deleted no

Jameson Ganta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4976 - 4980

4979

3. As P(X) is constant for all classes, only P(X/Ci)P(Ci) need
be maximized. If the class prior probabilities are not known,
then it is commonly assumed that the classes are equally
likely, that is, P(C1) = P(C2) = …….. = P(Cm). Given data
sets with many attributes, it would be extremely
computationally expensive to compute P(X/Ci). In order to
reduce computation in evaluating P(X/Ci), the naive
assumption of class conditional independence is made. This
presumes that the values of the attributes are conditionally
independent of one another, given the class label of the tuple
(i.e., that there are no dependence relationships among the
attributes). Thus,

We can easily estimate the probabilities P(x1/Ci), P(x2/Ci), :
: : , P(xn/Ci) fromthe training tuples. Recall that here xk
refers to the value of attribute Ak for tuple X. For each
attribute, we look at whether the attribute is categorical or
continuous-valued.

IV. EXPERIMENTAL RESULTS
Following results gives the appropriate prediction has to be
done on the delicious tag web site dynamically. Ranking
algorithms gives the best results while classifying the tag
dataset with the multiple link scenario.

V. CONCLUSION
In this paper, we briefly describe an approach utilizes
supervised ranking model for tag recommendations. Our tag
prediction contains three steps. First, Dynamically delicious
tags are added to the website through our application..
Second, features are decided according to categories. Then
we rank the candidate tags, using the supervised ranking
model, and pick the top tags as recommendation tags. The
experiment results show that our tag prediction model is able
to predict a considerably large portion of the stabilized tag set
with less error rate.

REFERENCES

[1] Link Mining for a Social BookmarkingWeb Site Feilong Chen, Jerry
Scripps, Pang-Ning Tan.

[2] Social Tag Prediction Paul Heymann, Daniel Ramage, and Hector
Garcia-Molina Department of Computer Science.

[3] Evaluating Tagging Behavior in Social Bookmarking Systems: Metrics
and design heuristics Umer Farooq1, Thomas G. Kannampallil1, Yang
Song2, Craig H. Ganoe1, John M. Carroll1, and C. Lee Giles2.

[4] B. D. Davison. Topical locality in the web. In SIGIR, 2000.
[5] R. Fagin. Combining fuzzy information from multiple systems. J.

Comput. Syst. Sci., 58(1), 1999.
[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for

middleware. J. Comput. Syst. Sci., 66(4), 2003.
[7] S. Golder and B. A. Huberman. Usage patterns of collaborative tagging

systems. Journal of Information Science, 32(2), 2006.
[8] H. Halpin, V. Robu, and H. Shepherd. The complex dynamics of

collaborative tagging. In WWW, 2007.
[9] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can social

bookmarking improve web search? In WSDM, 2008.

Jameson Ganta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4976 - 4980

4980

