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ABSTRACT- Social bookmarking tools enable users to save 
URLs for future  reference, to create tags for annotating Web 
pages, and to share  Web pages they found interesting with 
others. This project presents  a case study on the application of 
link mining to a social  bookmarking Web site called del.icio.us. 
User feedback is obtained by iteratively presenting a set of 
suggested items, and users selecting items based on their own 
preferences either from this suggestion set or from the set of all 
possible items. This proposed system  investigates  the user 
bookmarking and tagging behaviors by applying  robust  Naïve 
bayes, Association  rule mining techniques to  find surprising 
patterns in the data. This study mainly focuses on predicting  
popular rules than others. Finally, we demonstrated the 
effectiveness of using data mining algorithms for predicting  
effective tags rules behavior  for delicious web data. 
 

I. INTRODUCTION 

With the staggering rate at which new content is produced on 
the Internet, it is becoming increasingly difficult for Web 
users to keep up to date with the new information. Social 
bookmarking is a tool that enables Web users to share 
information they found on the Internet with other users 
sharing similar interests. It allows users to save and organize 
their bookmarks on a remote Web server. Users may assign 
tags to each bookmark to annotate what they perceive to be 
the content[1]. Some of the popular social bookmarking 
Websites include del.icio.us, www.citeulike.org, and 
www.furl.net. Social bookmarking is a rich but largely 
unexplored domain in link mining. Many applications such as 
Web search and text categorization may benefit from the 
analysis of social bookmarking data. For example, the 
number of users who bookmarked a Web page can be used as 
a metric to measure the authoritativeness of the Web page. 
The tags used to annotate the bookmarks is another useful 
data source that can be harnessed to improve Web search  or 
Web page classification . A social bookmarkingWeb site is 
also a fertile testbed to  investigate many social science 
phenomena such as information diffusion and social 
selection. One approach involves measuring the deviation of 
a pattern from its expected frequency while the other is based 
on performing a temporal analysis on the user’s bookmarking 
history. We then examined characteristics that influence the 
popularity of a user. At del.icio.us, a user becomes a fan of 
another user by adding the other user to his/her network.The 
number of fans each user has can be used as a measure of 
user popularity. Because popular users may influence the 
bookmarking activities of other users , it is useful to 
understand what makes a user more popular than others. 
Finally, we studied the linking behavior of users at the social 

bookmarking Web site. Specifically, we consider links in the 
form of reciprocal ties, which are pairs of users who are 
mutual fans of each other. Our goal is to predict the formation 
of such ties based on the user bookmarking and tagging 
activities.  
We define the popularity of bookmarks, users, and tags in the 
following way. 
1)Bookmark Popularity: The number of users who saved a 

given bookmark. 
2)User Popularity: The number of fans associated with a user. 
3)Tag Popularity: The number of posts that contain a given 

tag[3]. 
Our tag popularity measure is somewhat different than the 
one used by del.icio.us, which is based on the number of 
unique bookmarks associated with a given tag. There are two 
advantages for using our measure. First, it is more 
informative because it takes into account both the number of 
bookmarks and number of users who have used the tag. 
Second, our measure is more resilient to spam tags, which are 
the tags used to mislead users about the content of aWeb page 
or to attract users to a spamWeb site. If tag popularity is 
measured using the number of bookmarks only (instead of 
number of posts), it would be easier to promote a spam tag 
into a popular tag.. 
Motivation: 
Most classification algorithms perform batch classification, 
that is, they work on the dataset directly in memory. More 
complex methods often build large data structures which give 
them a larger memory footprint. This larger footprint 
prevents them from being applied to many of the larger 
datasets. Even when these datasets can be used, the 
complexity of the algorithm can make the classification task 
take an inordinately long time. There are solutions to these 
problems in the form of adding more memory or waiting 
longer for experiments to finish. However both have a cost in 
money and time and both may not ultimately solve the 
problem if the dataset cannot in memory when the 
memory is at a maximum. A feature of most large 
datasets is the large number of data points that contain similar 
information. So one solution is to remove redundant 
information from the dataset to allow a classifier to 
concentrate on data points that represent a larger group of 
points[4]. This allows the construction of a classier that 
correctly models the relationship expressed by the data in the 
dataset. Random sampling is a simple way to remove 
redundancy and can be very effective on uniformly 
distributed data. 
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II. RELATED WORK 

A typical Flickr provides a variety of information about the 
photo: who uploaded it and when, what groups it has been 
submitted to, its tags, who commented on the image and 
when, how many times the image was viewed or bookmarked 
as a “favorite”. Clicking on a user’s name brings one to their 
photo stream, which shows the latest photos they have 
uploaded, the images they have marked as their “favorite,” 
and their profile, which gives information about the user, 
which includes a list of their contacts and the groups they 
belong to. Clicking on the tag shows user’s images that have 
been tagged with this keyword, or all public images that have 
been similarly tagged. Finally, the group link brings the user 
to the group’s page, which shows the photo pool, group 
membership, popular tags, discussions and other information 
about the group. 
We used the Flickr API to download a variety of data for our 
study. For the data not provided through the API (for 
example, the number of views), we wrote specialized data 
scrapers to extract this information from the Web pages. 
Since scraping required a separate HTTP request, this had an 
effect on the image statistics (e.g., number of views is 
incremented by every HTTP request). We corrected for this 
effect in post-processing[2]. 
 
Database D of transactions, specific Web site 
Output: percentage of usage of particular site 
Method 
1. Accept specific site 
2. count = 0; 
3. for ( int i= 0; i<= D.size;i++) 
4. if(D_site = = accept_site) 
5. count ++ 
6. percentage= (count/D_site)*100 
7. return percentage //percentage of user from a particular site 
upon total web log record 
 
Find a particular site usage 
Input: Database D of transactions, Specific Web Site 
Output: Users’ IP, Date and Time list 
Method 
1. Accept a specific Web Site 
2. count = 0; 
3. for (int i=0; i<= D.size; i++) 
4. while (accept_site = = D_size) 
5. extract user_IP from D 
6. extract corresponding date and time 
7. return  list of user_IP, date and time 
 
Hierarchical Agglomerative Clustering The input to the 
clustering module is a set of tags, T, the step and division 
coefficient. Tags are represented as a vector of weights over 
the set of resources, R. In these experiments we used both 
term frequency and tfidf (Equation 5). The parameter step 
controls the granularity of the derived agglomerative clusters. 
The similarity threshold, initially set to one, is reduced by the 
value step at each iteration until it reaches zero. Clusters of 

tags are aggregated together if their similarity measure meets 
the current threshold. The division coefficient also plays a 
crucial role in the agglomerative clustering routine. It defines 
the level where the hierarchy is dissected into individual 
clusters. The output of the system is a set of tag clusters. 

 
Ref [5] 

Step 1. Assign every tag to a singleton cluster. To begin 
every tag in the system is placed in its own cluster, which 
serves as the seeds for the agglomerative clustering. 
Step 2. Combine all tags in one hierarchical cluster. In this 
stage of the algorithm clusters of tags are aggregated together 
based on their similarity. Highly similar tags are aggregated 
together first, then less similar ones are combined. The result 
is a tree structure containing every tag in a hierarchy. 
Step 2.1 Combine clusters. Clusters meeting the current 
similarity threshold are joined. There are many ways of 
determining the distance between clusters: single link, 
maximal link, average link, etc. In this paper, we determined 
the distance between clusters by using the centroids of the 
clusters. 
Step 2.2 Lower similarity. The value for the similarity 
threshold is lower by step. The algorithm then repeated 
step 2.1 until all clusters have been aggregated. 
Tag frequency 
Tags are used with varying frequencies in a social 
bookmarking system. It can be useful to evaluate the 
frequency of tags in order to investigate how particular tags 
are being used across time and what is the probability that 
they will be used again. 
Tags per Post (TPP) 
As a Describer would focus on describing her resources in a very 
detailed manner, the number of tags used to annotate each 
resource can be taken into account as an indicator to identify 
the motivation of the analyzed user. The tags per post 
measure (short TPP) captures this by dividing the number of 
all tag assignments of a user by the number of resources (see 
Equation 1). Tur is the number of tags annotated by user u on 
resource r, and Ru is the number of resources of a user u. The 
more tags a user utilizes to annotate the resources the more 
likely she is a Describer and this would reect in a higher TPP 
score. 
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This measure relies on the verbosity of users, as it computes 
the average number of tags they assigned to bookmarks. 
 
Tag Resource Ratio (TRR) 
The tag resource ratio (short TRR) relates the number of tags 
of a user (i.e., the size of her vocabulary) to the total number 
of annotated resources (see Equation 4). A typical 
Categorizer would apply only a small number of tags to her 
resources and therefore score a low number on this measure. 

            
 

III. PROPOSED ARCHITECTURE 

 
Figure1: Proposed Architecture 

A. Delicious Data 
In this paper two types of file formats are used. They 
are 
i) CSV 
ii) ARFF 

i. CSV:    It stands for Comma Separated Value. This 
format is obtained using MS-Excel. Spam dataset is loaded 
into Excel and then it is saved with an extension of csv.  

ii. ARFF:  It stands for Attribute Relation File 
Format. A file is an ASCII text file that describes a list of 
instances sharing a set of attributes. ARFF files were 
developed by the Machine Learning Project at the 
Department of Computer Science of The University of 
Waikato for use with the Weka machine learning 
softwareARFF files have two distinct sections. The first 
section is the Header information, which is followed the Data 
in The ARFF Header Section the ARFF Header section of the 

file contains the relation declaration and attributes 
declarations.  
B. The @relation Declaration 
 The relation name is defined as the first line in the 
ARFF file. The format is:  
@relation <relation-name> 
where <relation-name> is a string. The string must be quoted 
if the name includes spaces.  
C. The @attribute Declarations 
Attribute declarations take the form of an ordered sequence 
of @attribute statements. Each attribute in the data set has its 
own @attribute statement which uniquely defines the name 
of that attribute and its data type[6]. 
D. Delicious Tag Data 
We consider the situation where users select items from a 
given set  
 c:={1,2,3…..c} where c > 1.  

We let  be the users’ true preference 
over the set of items C and call r the true popularity rank 
scores. For an item i, we interpret ri as the portion of users 
that would select item I if suggestions were not made[5]. We 
assume that the true popularity rank scores r are such that:  
1) ri is strictly positive for each item i, 
2) items are enumerated such that   r1>=r2>=…>=rc and 
3) r is normalized such that it follows probability distribution. 
First, we consider the naive algorithm which suggests a fixed 
number of the topmost popular items and show that this 
algorithm can fail to learn the true popularity ranking of items 
if the imitation probability in the user’s choice model is 
sufficiently large. In particular, we find that there exists a 
threshold on the imitation probability below which the 
algorithm guarantees to learn the true popularity ranking of 
items, and otherwise, this may not hold. We fully specify this 
threshold in terms of the suggestion set size and the true 
popularity ranks of items[2]. This result enables us to 
estimate the threshold imitation probability for a given true 
popularity ranking. In particular, we provide estimates for the 
threshold using our data set of tags applied to popular Web 
pages in del.icio.us and found threshold to be typically 
around 0.1 for the suggestion set sizes ranging from 1 to 10 
tags. This suggests that in real-world scenarios, using the 
above simple scheme may result in failing to learn the true 
popularity of items at small imitation rates.  
E. A Naive Algorithm 
We first introduce the simple algorithm TOP which consists 
of a ranking and a suggestion rule as defined below. 
TOP ( TOP POPULAR) 
Init Vi=0 for each item i 
At the t-th item selection: 
If item i selected: 
Vi Vi+1 
S a set of s items with largest V counts 
The ranking rule is to set the rank score of an item equal to 
the number of selections of this item in the past. For this 
algorithm and the algorithms introduced later, we initialize Vi 
<0 for each item i. 

Jameson Ganta et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,4976 - 4980

4978



Rank rule 1: A simple ranking rule is the one that we already 
encountered in the algorithm TOP, where the rank score for 
an item i is incremented by 1 whenever a user selects this 
item.  

    
Init: Vi =0 for each item i  
At the t-th item selection: 
If item I selected: 
Vi Vi +1 
Pi  Vi/t 
We will see that this ranking may fail to discover the ranking 
order of the true popularity when combined with a suggestion 
rule that reinforces items that were selected early on, as it is 
the case under TOP. 
 
Rank rule 2:  
We noted that rank rule 1 may fail to discover the ranking 
order of the true popularity if used with suggestion rules such 
as TOP[7]. To overcome this problem, we may redefine the 
rank scores in the following way. 
 
Init:  Ti =0,Vi=0,  for each item i  
At the t-th item selection: 
For each item i: 
If item i not suggested: 
Ti Ti +1 
If item i selected: 
Vi Vi +1 
Pi  Vi/ti  
 
F. Bayesian Classification 
Bayesian classifiers are statistical classifiers. They can 
predict class membership probabilities, such as the 
probability that a given tuple belongs to a particular class. 
Bayesian classification is based on Bayes  theorem. Naïve 
Bayesian classifiers assume that the effect of an attribute 
value on a given class is independent of the values of the 
other attributes. This assumption is called class conditional 
independence. It is made to simplify the computations 
involved and, in this sense, is considered “naïve.” Bayesian 
belief networks are graphical models, which unlike naïve 
Bayesian classifiers, allow the representation of dependencies 
among subsets of attributes. Bayesian belief networks can 
also be used for classification. 
 
G. Bayes’ Theorem 
Bayes’ theorem is named after Thomas Bayes, a 
nonconformist English clergyman who did early work in 
probability and decision theory during the 18th century. Let 
X be a data tuple. In Bayesian terms, X is considered 
“evidence.” As usual, it is described by measurements made 

on a set of n attributes. Let H be some hypothesis, such as 
that the data tuple X belongs to a specified class C. For 
classification problems, we want to determine P(H/X), the 
probability that the hypothesis H holds given the “evidence” 
or observed data tuple X. In other words, we are looking for 
the probability that tuple X belongs to class C, given that we 
know the attribute description of X. P(H/X) is the posterior 
probability, or a posteriori probability, of H conditioned on 
X. For example, suppose our world of data tuples is confined 
to customers described by the attributes age and income, 
respectively, and that X is a 35-year-old customer with an 
income of $40,000. Suppose that H is the hypothesis that our 
customer will buy a computer. Then P(H/X) reflects the 
probability that customer X will buy a computer given that 
we know the customer’s age and income. In contrast, P(H) is 
the prior probability, or a priori probability, of H. For our 
example, this is the probability that any given customer will 
buy a computer, regardless of age, income, or any other 
information, for that matter. The posterior probability, 
P(H/X), is based on more information (e.g., customer 
information) than the prior probability, P(H), which is 
independent of X. Similarly, P(X/H) is the posterior 
probability of X conditioned on H. That is, it is the 
probability that a customer, X, is 35 years old and earns 
$40,000, given that we know the customer will buy a 
computer[8][9]. P(X) is the prior probability ofX.Using our 
example, it is the probability that a person from our set of 
customers is 35 years old and earns $40,000. P(X/H), and 
P(X) may be estimated from the given data, as we shall see 
below. Bayes’ theorem is useful in that it provides a way of 
calculating the posterior probability, P(H/X), from P(H), 
P(X/H), and P(X). Bayes’ theorem is 

 
 
 

H. Naïve Bayesian Classification 
The naïve Bayesian classifier, or simple Bayesian classifier, 
works as follows: 
1. Let D be a training set of tuples and their associated class 
labels. As usual, each  tuple is represented by an n-
dimensional attribute vector, X = (x1, x2, : : : , xn), depicting 
n measurements made on the tuple from n attributes, 
respectively, A1, A2, : : : , An. 
2. Suppose that there are m classes, C1, C2, : : : , Cm. Given 
a tuple, X, the classifier will predict that X belongs to the 
class having the highest posterior probability, conditioned on 
X. That is, the naïve Bayesian classifier predicts that tuple X 
belongs to the class Ci if and only if P(Ci/X) > P(Cj/X). Thus 
we maximize P(Ci/X). The classCi for which P(Ci/X) is 
maximized is called the maximum posteriori hypothesis. By 
Bayes’ theorem  
            

 

Tagid Linkid Date Tagname TagClass 
1 16693 19:26.5 Portland yes 
2 16693 19:26.6 Maine no 
3 16693 19:26.6 meetup yes 
4 16167 02:17.1 mefi yes 
5 16167 02:17.1 deleted no 
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3. As P(X) is constant for all classes, only P(X/Ci)P(Ci) need 
be maximized. If the class prior probabilities are not known, 
then it is commonly assumed that the classes are  equally 
likely, that is, P(C1) = P(C2) = …….. = P(Cm). Given data 
sets with many attributes, it would be extremely 
computationally expensive to compute P(X/Ci). In order to 
reduce computation in evaluating P(X/Ci), the naive 
assumption of class conditional independence is made. This 
presumes that the values of the attributes are conditionally 
independent of one another, given the class label of the tuple 
(i.e., that there are no dependence relationships among the 
attributes). Thus, 

 
We can easily estimate the probabilities P(x1/Ci), P(x2/Ci), : 
: : , P(xn/Ci) fromthe training tuples. Recall that here xk 
refers to the value of attribute Ak for tuple X. For each 
attribute, we look at whether the attribute is categorical or 
continuous-valued.  
 

IV. EXPERIMENTAL RESULTS 
Following results gives the appropriate  prediction has to be 
done on the delicious tag web site dynamically.  Ranking 
algorithms gives the best results while classifying the tag 
dataset with the multiple link scenario.  
 

 

 
 

V. CONCLUSION 
In this paper, we briefly describe an approach utilizes 
supervised ranking model for tag recommendations. Our tag 
prediction contains three steps. First, Dynamically delicious 
tags are added to the website through our application.. 
Second, features are decided according to categories. Then 
we rank the candidate tags, using the supervised ranking 
model, and pick the top tags as recommendation tags. The 
experiment results show that our tag prediction model is able 
to predict a considerably large portion of the stabilized tag set 
with less error rate. 
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